
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 14 November 2022
Markus Püschel, David Steurer
François Hublet, Goran Zuzic, Tommaso d’Orsi, Jingqiu Ding

Algorithms & Data Structures Exercise sheet 8 HS 22

�e solutions for this sheet are submi�ed at the beginning of the exercise class on 21 November 2022.

Exercises that are marked by ∗ are “challenge exercises”. �ey do not count towards bonus points.

You can use results from previous parts without solving those parts.

Exercise 8.1 Exponential bounds for a sequence de�ned inductively.

Consider the sequence (an)n∈N de�ned by

a0 = 1,

a1 = 1,

a2 = 2,

ai = ai−1 + 2ai−2 + ai−3 ∀i ≥ 3.

�e goal of this exercise is to �nd exponential lower and upper bounds for an.

(a) Find a constant C > 1 such that an ≤ O(Cn) and prove your statement.

Solution:

Intuitively, the sequence (an)n∈N seems to be increasing. Assuming so, we would have

ai = ai−1 + 2ai−2 + ai−3 ≤ ai−1 + 2ai−1 + ai−1 = 4ai−1,

which yields

an ≤ 4an−1 ≤ . . . ≤ 4na0 = 4n.

�is only comes from an intuition, but it is a good way to guess what the upper bound could be.
Now let us actually prove (by induction) that an ≤ 4n for all n ∈ N.

Induction Hypothesis. We assume that for k ≥ 2 we have

ak ≤ 4k, ak−1 ≤ 4k−1, ak−2 ≤ 4k−2. (1)

Base case k = 2. Indeed we have a0 = 1 ≤ 40, a1 = 1 ≤ 41 and a2 = 2 ≤ 42.

Inductive step (k → k + 1). Let k ≥ 2 and assume that the induction hypothesis (1) holds. To
show that it also holds for k + 1, we need to check that ak+1 ≤ 4k+1, ak ≤ 4k and ak−1 ≤ 4k−1.
�e two last inequalities clearly hold since they are part of the induction hypothesis, so we only
need to check that ak+1 ≤ 4k+1. Indeed,

ak+1 = ak + 2ak−1 + ak−2
(1)
≤ 4k + 2 · 4k−1 + 4k−2 ≤ 4k + 2 · 4k + 4k = 4 · 4k = 4k+1.

�us, an ≤ 4n for all n ∈ N. In particular, we have shown that an ≤ O(Cn) for C = 4 > 1.

(b) Find a constant c > 1 such that an ≥ Ω(cn) and prove your statement.

Solution:

If we again assume that the sequence is increasing, we would get

ai = ai−1 + 2ai−2 + ai−3 ≥ ai−3 + 2ai−3 + ai−3 = 4ai−3,

which yields

an ≥ 4an−3 ≥ . . . ≥ 4bn/3ca0 = 4bn/3c.

So we will aim to prove a lower bound of the form an ≥ ε · 4n/3 for some constant ε > 0. We see
that taking ε := min{1, 4−1/3, 2 · 4−2/3} = 4−1/3 will make the inequality satis�ed for the base
case, so let’s prove by induction that an ≥ 4−1/34n/3 for all n ∈ N.

Induction Hypothesis. We assume that for k ≥ 2 we have

ak ≥ 4−1/34k/3, ak−1 ≥ 4−1/34(k−1)/3, ak−2 ≥ 4−1/34(k−2)/3. (2)

Base case k = 2. Indeed we have a0 = 1 ≥ 4−1/3 · 40, a1 = 1 ≥ 4−1/341/3 and a2 = 2 ≥ 41/3 =
4−1/342/3.

Inductive step (k → k + 1). Let k ≥ 2 and assume that the induction hypothesis (2) holds. To
show that it also holds for k+ 1, we need to check that ak+1 ≥ 4−1/34(k+1)/3, ak ≥ 4−1/34k/3 and
ak−1 ≥ 4−1/34(k−1)/3. �e two last inequalities clearly hold since they are part of the induction
hypothesis, so we only need to check that ak+1 ≥ 4−1/34(k+1)/3. Indeed,

ak+1 = ak + 2ak−1 + ak−2
(2)
≥ 4−1/3

(
4k/3 + 2 · 4(k−1)/3 + 4(k−2)/3

)
≥ 4−1/3

(
4(k−2)/3 + 2 · 4(k−2)/3 + 4(k−2)/3

)
= 4−1/3 · 4 · 4(k−2)/3 = 4−1/34(k+1)/3.

�us, an ≥ 4−1/34n/3 for all n ∈ N. In particular, we have shown that an ≥ Ω(cn) for c = 41/3 >
1.

Remark. One can actually show that an = Θ(φn), where φ ≈ 2.148 is the unique positive solution
of the equation x3 = x2 + 2x+ 1.

Exercise 8.2 AVL trees (1 point).

(a) Draw the tree obtained by inserting the keys 1, 6, 8, 0, 3, 2, 9 in this order into an initially empty
AVL tree. Give also the intermediate states before and a�er each rotation that is performed during
the process.

Solution:

Insert 1 and then 6:

1

6

2

Insert 8:

1

6

8

6

1 8
Rotate le�

Insert 0 and 3:

6

1

0 3

8

Insert 2:

6

1

0 3

2

8

6

3

1

0 2

8

3

1

0 2

6

8

Rotate le� Rotate right

Insert 9:

3

1

0 2

6

8

9

3

1

0 2

8

6 9

Rotate le�

(b) Delete 0, 2, and 1 in this tree, and a�erwards delete key 6 in the resulting tree. Give also the
intermediate states before and a�er each rotation is performed during the process.

3

Solution:

Delete 0 and 2:

3

1 8

6 9

Delete 1:

3

8

6 9

3

6

8

9

6

3 8

9

Rotate right Rotate le�

Delete 6:

Key 6 can either be replaced by its predecessor key, 3, or its successor key, 8. If key 6 is replaced by
its predecessor:

3

8

9

8

3 9
Rotate le�

If key 6 is instead replaced by its successor:

8

3 9

Exercise 8.3 Augmented Binary Search Tree.

4

Consider a variation of a binary search tree, where each node has an additional member variable called
size. �e purpose of the variable size is to indicate the size of the subtree rooted at this node. An
example of an augmented binary search tree (with integer data) can be seen below (Fig. 1).

10
size=7

7
size=4

3
size=1

8
size=2

9
size=1

12
size=2

15
size=1

Figure 1: Augmented binary search tree

a) What is the relation between the size of a node and the sizes of its children?

Solution:

For every node in the tree, we have

node.size = node.left.size + node.right.size + 1.

Note that throughout the solution of this exercise, we adopt the convention that null.size = 0.

b) Describe in pseudo-code an algorithm VerifySizes(root) that returns true if all the sizes in the
tree are correct, and returns false otherwise. For example, it should return true given the tree in
Fig. 1, but false given the tree in Fig. 2.

What is the running time of your algorithm? Justify your answer.

Solution:

Algorithm 1 Verifying the sizes of the tree
function VerifySizes(root)

if root = null then
return true

else if VerifySizes(root.left) = false or VerifySizes(root.right) = false then
return false

else
CorrectSize← 1 + root.left.size + root.right.size
return CorrectSize = root.size

5

10
size=7

7
size=4

3
size=1

8
size=2

9
size=1

12
size=5

15
size=1

Figure 2: Augmented binary search tree with buggy size: incorrect size for node with data “12”

�e above recursive algorithm visits every node of the tree exactly once. Furthermore, it performs
a constant number of operations O(1) at each node. �erefore, the runtime is O(n), where n is the
number of nodes in the tree.

c) Suppose we have an augmented AVL tree (i.e., as above, each node has a size member variable).
Describe in pseudo-code an algorithm Select(root, k) which, given an augmented AVL tree and
an integer k, returns the k-th smallest element in the tree in O(log n) time.

Example: Given the tree in Fig. 1, for k = 3, Select returns 8; for k = 5, it returns 10; for k = 1, it
returns 3; etc.

Solution:

Algorithm 2 Selecting the k-th smallest element
function Select(root, k)

current← root.left.size + 1
if k = current then

return root.data
else if k < current then

return Select(root.left, k)
else

return Select(root.right, k − current)

�e above algorithm follows a downward path until it �nds the correct node. Furthermore, it per-
forms a constant number of operations O(1) at each visited node. �erefore, the runtime of the
algorithm is O(h), where h is the height of the tree. Now since the tree is an AVL tree, we have
h = O(log n). We conclude that the runtime of the above algorithm is O(log n).

d)* To maintain the correct sizes for each node, we have to modify the AVL tree operations, insert
and remove. For this problem, we will consider only the modi�cations to the AVL-insert method

6

(i.e., you are not responsible for AVL-remove). Recall that AVL-insert �rst uses regular insert for
binary search trees, and then balances the tree if necessary via rotations.

• How should we update insert to maintain correct sizes for nodes?

During the balancing phase, AVL-insert performs rotations. Describe what updates need to be
made to the sizes of the nodes. (It is su�cient to describe the updates for le� rotations, as right
rotations can be treated analogously.)

Solution:

�e regular insert function follows a downward path and then adds the new node as a leaf at the
correct place. We only need to increment the variable size by 1 at each visited node, and set the
variable size of the added leaf to 1. �e runtime of the modi�ed function remains O(h), where h is
the height of the tree. If the tree is an AVL tree, then the runtime is O(log n).

Regarding AVL-insert, a�er modifying the regular insert function as we explained, we need to
modify the rotation functions Left-Rotate and Right-Rotate to maintain the correct size vari-
ables.

Suppose we are performing a right-rotation on the node y of the tree that is drawn on the le� (or
performing a le�-rotation on the node x of the tree that is drawn on the right):

y

x

α β

γ

x

α y

β γ

Rotate-Right

Rotate-Left

In the above diagrams, α, β and γ represent subtrees. As can be easily seen, only x.size and y.size
need to be updated, and we can apply the relation in a) in the correct order:

• At the end of Rotate-Right, we apply

y.size← y.left.size + y.right.size + 1,

and then
x.size← x.left.size + x.right.size + 1.

• At the end of Rotate-Left, we apply

x.size← x.left.size + x.right.size + 1,

and then
y.size← y.left.size + y.right.size + 1.

As we can see, the runtime of the modi�ed Right-Rotate (resp. Left-Rotate) function remains
O(1). �erefore, the runtime of AVL-insert remains O(log n).

Remark: It is also possible to modify AVL-delete to maintain the correctness of the size variables
while keeping the O(log n) runtime.

7

Exercise 8.4 Round and square brackets.

A string of characters on the alphabet {A, . . . , Z, (,), [,]} is called well-formed if either

1. It does not contain any brackets, or

2. It can be obtained from an empty string by performing a sequence of the following operations,
in any order and with an arbitrary number of repetitions:

(a) Take two non-empty well-formed strings a and b and concatenate them to obtain ab,

(b) Take a well-formed string a and add a pair of round brackets around it to obtain (a),

(c) Take a well-formed string a and add a pair of square brackets around it to obtain [a].

�e above re�ects the intuitive de�nition that all brackets in the string are ‘matched’ by a bracket of the
same type. For example, s = FOO(BAR[A]), is well-formed, since it is the concatenation of s1 = FOO,
which is well-formed by 1., and s2 = (BAR[A]), which is also well-formed. String s2 is well-formed
because it is obtained by operation 2(b) from s3 = BAR[A], which is well-formed as the concatenation
of well-formed strings s4 = BAR (by 1.) and s5 = [A] (by 2(c) and 1.). String t = FOO[(BAR]) is not
well-formed, since there is no way to obtain it from the above rules. Indeed, to be able to insert the
only pair of square brackets according to the rules, its content t1 = (BAR must be well-formed, but this
is impossible since t1 contains only one bracket.

Provide an algorithm that determines whether a string of characters is well-formed. Justify brie�y why
your algorithm is correct, and provide a precise analysis of its complexity.

Hint: Use a data structure from the last lecture.

Solution:

We use a stack providing standard pop, push, and isEmpty operations. Given a stackS, S.pop() removes
and returns the element on top of the stack, if it exists, and a constant None otherwise, while S.push(x)
pushes x onto the top of the stack, and S.isEmpty() returns a boolean indicating whether the stack is
empty or not. Finally, we assume a function emptyStack that initializes and returns an empty stack.
Our algorithm is as follows:

Algorithm 3 Detecting well-formed strings
function IsWellFormed(s)

S ← emptyStack()
for i ∈ {0, ..., |s| − 1} do

if s[i] = “(” then
S.push(“(”)

else if s[i] = “[” then
S.push(“[”)

else if s[i] = “)” then
if S.pop() 6= “(” then

return False

else if s[i] = “]” then
if S.pop() 6= “[” then

return False

return S.isEmpty()

8

Correctness. First, we see that we can completely ignore non-bracket characters to determine well-
formedness. �e correctness of our algorithm then results from the following invariant: for all s, the
for loop of IsWellFormed(s) terminates (without returning early) in a con�guration with an empty
stack if and only if s is well-formed.

We can prove this by induction on the length of s.

Base case: If s has length 0, then it is empty. �en s is well-formed and IsWellFormed(s) indeed
terminates immediately with an empty stack.

Induction hypothesis: Let n > 0. Assume that for all s of length |s| ≤ n − 1, the for loop of
IsWellFormed(s) terminates (without returning early) in a con�guration with an empty stack if and
only if s is well-formed.

Induction step: Let s be a well-formed string of length s. First, assume that s is well-formed. �ere
are three cases:

• If s is of the form ab with 0 < |a|, |b| < |s|, then by our induction hypothesis the for loop
of IsWellFormed(a) and IsWellFormed(b) terminates in a con�guration with an empty stack.
When running IsWellFormed(s), the �rst |a| are exactly the same as in IsWellFormed(a), and
we end up with an empty stack a�er |a| iterations. �en, we run exactly the same |b| steps as in
IsWellFormed(b), ending up again with an empty stack. We successfully return True.

• If s if of the form (a), then running IsWellFormed(s) �rst pushes “(” onto the stack, and then
runs the same steps (from iterations 1 to |s|) as in IsWellFormed(a), but with the additional “(”
element remaining at the bo�om of the stack. By our induction hypothesis, the stack contains
only “(” a�er iteration |s|, a�er which iteration |s|+1 removes “(” from the stack and terminates
successfully.

• �e argument is similar for s = [a].

Conversely, assume that IsWellFormed(s) returns True. We distinguish between two cases:

• If S is empty in some intermediate iteration i ∈ {1, . . . , |s| − 1}, consider such an i. �en the
successful execution of IsWellFormed(s) is exactly the concatenation of two successful execu-
tions of IsWellFormed(s[0..i]) and IsWellFormed(s[i + 1..|s| − 1]). Hence, by our induction
hypothesis, s[0..i] and s[i + 1..|s| − 1] are well-formed, and their concatenation s is also well-
formed.

• If S is never empty in any intermediate iteration, then we observe that the �rst element pushed
onto the stack is never popped before the very last iteration. For this last pop to be succeed, the
�rst and last character of s must be matching brackets (i.e., () or []). Moreover, as the element
at the bo�om of the stack is never popped and the �nal stack is empty, iterations 1 to |s| − 2
must be exactly identical to a successful execution of IsWellFormed(s[1..|s|−2]). Hence, by our
induction hypothesis, s[1..|s|−2] is a well-formed string, and so is swhich is either (s[1..|s|−2])
or [s[1..|s| − 2]].

Remark. �e above constitutes a formal proof of the correctness of the algorithm, provided for the
sake of completeness. A more informal argument shall also be counted as correct.

Complexity. Each iteration of the for loop has runtime complexityO(1): stack operations areO(1),
and we execute at most one such operation per iteration, along with at most 5 constant-time tests
and at most one constant-time return statement. As there are |s| iterations in total and the rest of the
operations are constant-time, we get a total runtime complexity in O(|s|).

9

Exercise 8.5 Computing with a stack (2 points).

In many programming languages, e.g., in Python, stacks are commonly used for evaluating arithmetic
expressions. Evaluating expressions usually happens in two steps. First, values are loaded into the
stack. �en, operations are applied stepwise on the top elements in order to obtain the desired value.

4

3

2

7

Figure 3: A stack S0 containing the numbers 4, 3, 2, and 7 (7 is the top of the stack)

In this exercise, we focus on the second phase, and consider the following three basic operations used
to compute with stacks:

pop: If there is at least one element in the stack, remove the top element of the stack. Otherwise, do
nothing.

add: If there are at least two elements in the stack, remove the top two elements, compute their sum,
and push this sum back into the stack. If there is less than two elements in the stack, do nothing.

mul: If there are at least two elements in the stack, remove the top two elements, compute their prod-
uct, and push this product back into the stack. If there is less than two elements in the stack, do
nothing.

Below are examples of applications of pop, add, and mul.

→

4

3

2

7

4

3

2

(a) pop (remove 7)

→

4

3

2

7

4

3

9

(b) add (7 + 2 = 9)

→

4

3

2

7

4

3

14

(c) mul (7 · 2 = 14)

We say that an integer i can be computed from a stackS if and only if there exists a sequence of pop, add,
and mul operations on S that ends with i on top of the stack. For example, the value (3 · 2) + 4 = 10
can be computed from the stack S0 above through the following sequence of operations:

10

pop→ mul→ add→

4

3

2

7

4

3

2

4

6

10

Figure 5: Computing 10 from S0

Given a stack S containing n integers S1, . . . , Sn ∈ {1, . . . , k} (with S1 being the top of the stack) and
an integer c, you are tasked to design a DP algorithm which determines if c can be computed from S.
To obtain full points, your algorithm should have complexity at most O(c · n), but partial points will
be awarded for any solution running in time O(kn · n).

In your solution, address the following aspects:

1. Dimensions of the DP table: What are the dimensions of the DP table?

2. De�nition of the DP table: What is the meaning of each entry?

3. Computation of an entry: How can an entry be computed from the values of other entries? Specify
the base cases, i.e., the entries that do not depend on others.

4. Calculation order: In which order can entries be computed so that values needed for each entry have
been determined in previous steps?

5. Extracting the solution: How can the solution be extracted once the table has been �lled?

6. Running time: What is the running time of your solution?

Solution:

For i ∈ {1, . . . , n}, we denote by S[1..i] the stack containing the top i elements of S.

1. Dimensions of the DP table: DP [1 . . . c][1 . . . n]

2. De�nition of the DP table: DP [i][j] is True if, and only if, i can be computed from the stack S[1..j]
and the stack produced by the computation contains only one element in the end, and False otherwise.

3. Computation of an entry: DP can be computed recursively as follows:

DP [i][1] = (i == S1)

DP [i][j] = False j > 1, Sj > i

DP [i][j] = (i == Sj) or DP [i− Sj , j − 1] j > 1, Sj ≤ i, Sj - i
DP [i][j] = (i == Sj) or DP [i− Sj , j − 1] or DP [i/Sj , j − 1] j > 1, Sj | i.

�e three factors of the disjunction in the last equation correspond to the three possible cases in
which i can be computed from S[1..j], leaving a singleton stack in the end:

(a) By popping all of S[1..j − 1] and returning Sj = i (case i = Sj),

11

(b) By computing i − Sj from S[1..j − 1], and then performing add (case DP [i − Sj , j − 1])
between i− Sj (which is now on top of the stack) and Sj ,

(c) By computing i/Sj from S[1..j−1], and then performing mul (caseDP [i−Sj , j−1]) between
i/Sj (which is now on top of the stack) and Sj .

�e second case is only possible if Sj ≤ i, the last if Sj is a divisor of i.

Note that since all numbers in the stack are positive, all intermediate values obtained during the
computation of c must be contained in {1, . . . , c}. Hence, considering only i ∈ {1, . . . , c} is su�-
cient.

4. Calculation order: Following the recurrence relations above, we can compute �rst by order of in-
creasing j, and then by order of increasing i.

5. Extracting the solution: �e solution is DP [c][1] or . . . or DP [c][n].

6. Running time: �e running time of the solution is O(c · n+ n) = O(c · n) as there are c · n entries
in the table, we process each entry in O(1) time, and the solution is computed in O(n) time.

Remark. In practice, a solution based on memoization might be more e�cient for this problem, given
that many values of i may not be computable from the Sk.

(*) Challenge question: Extend your algorithm to support the following additional operation:

neg: If there is at least one element in the stack, remove the top element x of the stack, and push −x
back into the stack. Otherwise, do nothing.

Solution:

With the neg operation at our disposal, a naı̈ve approach would consist in adding a disjunct

. . . or DP [−i, j]

in the recursion. But this would break the calculation order, since entries with the same value of j
(concretely, all DP [i, j] and DP [−i, j]) would depend on each other. We observe, however, that i can
be computed if and only if −i can be computed (just apply neg). Hence, we can change the de�nition
of our table to be “DP [i][j] is True if, and only if, i or −i can be computed from the stack S[1..j], and
False otherwise”, and instead add only a case DP [i + Sj , j − 1] to the disjunction, corresponding to
an application of neg followed by an application of add. �e last thing that needs to be changed is
the size of the �rst dimension of the table, since intermediate results can now be larger than i. A safe
bound for intermediate results is kn.

12

